Roles of Brucella abortus SpoT in morphological differentiation and intramacrophagic replication.

نویسندگان

  • Suk Kim
  • Kenta Watanabe
  • Hiroshi Suzuki
  • Masahisa Watarai
چکیده

The essential mechanisms and virulence factors enabling Brucella species to survive and replicate inside host macrophages are not fully understood. The authors previously reported that a putative guanosine 5'-diphosphate 3'-diphosphate (ppGpp) mutant (spoT mutant) of Brucella abortus failed to replicate in HeLa cells. The present study showed that the pattern of surface proteins and morphological change of the spoT mutant were different from B. abortus wild-type. B. abortus wild-type changed its morphology upon treatment with ppGpp synthetase I activation inhibitor. In various tests under stress conditions, including nutrient starvation, nitric oxide resistance, acid resistance and antibiotic resistance, the spoT mutant had a lower stress resistance than B. abortus wild-type. Although the spoT mutant has the same smooth phenotype and LPS profile as B. abortus wild-type, it had a higher rate of adherence to macrophages but lower internalization and intracellular replication within macrophages. The spoT mutant did not co-localize with either late endosomes or lysosomes and was almost cleared from the spleens of mice after 10 days, without splenomegaly. RT-PCR was used to detect spoT mRNA from around 10(6) cells incubated in low-pH enriched medium; it showed that the expression of spoT increased after 30 min incubation. The data suggest that SpoT does not contribute to intracellular trafficking of B. abortus, but contributes to the maintenance of bacterial morphology and the physiological adaptation required for intracellular replication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secretion of listeriolysin by Brucella suis inhibits its intramacrophagic replication.

The introduction into Brucella suis 1330 of a plasmid allowing the heterologous expression of a hybrid cytolysin containing listeriolysin from Listeria monocytogenes, and its export via the Escherichia coli hemolysin secretion pathway, resulted in secretion of active listeriolysin monitored by erythrocyte lysis. In contrast to observations with the nonhemolytic control strain, the phagosomes of...

متن کامل

Brucella suis histidinol dehydrogenase: synthesis and inhibition studies of a series of substituted benzylic ketones derived from histidine.

Brucella spp. is the causative agent of brucellosis (Malta fever), which is the most widespread zoonosis worldwide. The pathogen is capable of establishing persistent infections in humans which are extremely difficult to eradicate even with antibiotic therapy. Moreover, Brucella is considered as a potential bioterrorism agent. Histidinol dehydrogenase (HDH, EC 1.1.1.23) has been shown to be ess...

متن کامل

Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages.

The facultatively intracellular pathogen Brucella, characterized by its capacity to replicate in professional and non professional phagocytes, also causes abortion in ruminants. This property has been linked to the presence of erythritol in the placenta, as brucellae preferentially utilize erythritol. The ery operon encodes enzymes involved in erythritol metabolism, and a link with virulence ha...

متن کامل

Targeting of the virulence factor acetohydroxyacid synthase by sulfonylureas results in inhibition of intramacrophagic multiplication of Brucella suis.

The acetohydroxyacid synthase (AHAS) of Brucella suis can be effectively targeted by the sulfonylureas chlorimuron ethyl and metsulfuron methyl. Growth in minimal medium was inhibited, and multiplication in human macrophages was totally abolished with 100 microM of sulfonylureas. Metsulfuron methyl-resistant mutants showed reduced viability in macrophages and reduced AHAS activity.

متن کامل

Impairment of intramacrophagic Brucella suis multiplication by human natural killer cells through a contact-dependent mechanism.

Brucella spp. are facultative intracellular bacteria that can establish themselves and cause chronic disease in humans and animals. NK cells play a key role in host defense. They are implicated in an early immune response to a variety of pathogens. However, it was shown that they do not control Brucella infection in mice. On the other hand, NK cell activity is impaired in patients with acute br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 151 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2005